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Abstract. A Monte Carlo technique for charge transport is applied to a Fermi system in 
which the electron-phonon scattering is described by means of perturbation theory and the 
Fermi statistics are achieved by the use of an appropriate algorithm. The stationarisation 
conditions of the system are studied, and it is found that the transport parameters obtained 
by the simulations as a function of temperature are in good agreement with the theory of 
metals. Possible extentions to the low-resistivity states are suggested. 

1. Introduction 

In recent years, Monte Carlo simulations have been used successfully for the study of 
the transport properties of semiconductor and insulator materials under conditions of 
high electric fields, and recently also for the description of microdevices [l-31. On the 
contrary, in metals they have been scarcely used because the driving field causes only 
small deviations from thermal equilibrium and especially because the electrons follow 
the Fermi statistics, while the usual Monte Carlo model describes Boltzmann systems. 

In a previous paper [4] we presented an application of an ensemble Monte Carlo 
simulation to a model of a metal using an appropriate algorithm, first applied by 
Lugli and Ferry [5 ]  for the description of degenerate semiconductors, to take into 
account the Pauli exclusion principle. This was an early test of the applicability of 
the technique to simple metals for the study of electron-phonon interactions. In this 
work we present a development of the Monte Carlo technique applied to metallic 
systems to study the transport parameters and their behaviour as a function of the 
temperature. In particular, we study the resistivity versus temperature choosing as 
estimator the longitudinal diffusion coefficient and using the Einstein relation. We 
present some results which are in good agreement with the theory of metals at high 
and low temperatures indicating that it is possible to apply this technique to a normal 
state of the metal using a reasonable computer amount of time in order to treat the 
electron-phonon coupling and transport parameters. It is possible then to envisage the 
application of the same technique to realistic situations for metals in the normal state 
as may happen close to the transition to the superconductivity state. 

2. The numerical simulation 

The ensemble Monte Carlo simulation used in this paper is based on following the 
story of a sufficiently large number of electrons (N = lo5) for a given time interval t, 
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within a volume V, = N / n  N cm3, where n = cmV3 is the typical electronic 
concentration of a metal. A constant electrical field of the order of 1 V cm-' is 
applied in the z direction. The electrons are injected at t = 0 into the crystal with an 
appropriate energy distribution g ( q  0). Generally in our Monte Carlo simulations we 
use an initial distribution S ( E ,  0) close to that expected at  infinite time because we are 
interested in the study of the steady state of the system. 

During the time t ,  we make - 30 observations of the state of motion of each 
electron. For the sake of simplicity the observations are made at regular time intervals 
At; at each At the following quantities are recorded: 

(1) represents the mean dispacement of the electrons in the field direction from which 
the drift velocity w = d(z)/dt can be obtained; the transversal diffusion coefficient 
and the longitudinal diffusion coefficient arise respectively from (2) and (3) from Fick's 
equations [l, 61 : 

I d  
T - 4 d t  

D - - - ( x 2 + y 2 )  

and 

I d  
L - 2 d t  

D - - - ((z - ( z ) )~ ) .  ( 5 )  

When the Monte Carlo simulation is used to obtain the drift velocity of the charge 
carriers at low applied field, the statistical uncertainty originating from the thermal 
motion may become particularly large especially when the ohmic mobility is sought. 
For this case, then, it is more convenient to evaluate the diffusion coefficient at very 
low field (approximately zero field) and then to obtain the ohmic mobility by means of 
the Einstein relation: 

where p and e are the electronic mobility and charge respectively. Such a relation holds 
in general (both in the classical and quantum case) for a system of non-interacting 
pzrticles [7] as in our case. We report in figure 1 on the temporal behaviours of ( z )  
(curve A) and of (x2 + y 2 )  (curve B )  for a system in which the Fermi energy is 1 eV, 
the Debye temperature is 0.1 eV and the lattice temperature is 77 K. It is evident that 
the curve B reaches stationarity after a very short time; on the contrary it is doubtful 
whether the drift velocity, represented by the angular coefficient of curve A, reaches 
a reliable value in the reported times. However, the mobility obtained by the drift 
velocity and the diffusion coefficient are quite different. According to a commonly 
accepted point of view [l] the diffusion coefficient is a much more accurate estimator 
for p. 

The Monte Carlo method for charge transport is based on a semiclassical descrip- 
tion in which an electron (or N electrons) is simulated as a classical particle subjected to 
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t ( lO-“s)  

Figure 1. Temporal behaviour of ( 2 )  (curve A) 
and (x2 + y 2 )  (curve B) obtained by computer 
simulation of the motion of 10’ electrons in 
a system in which E F  = 1 eV, hw = 0.1 eV and 
T = 77 K. 

a scattering rate S(k, k’)  obtained by means of perturbation theory. The total scattering 
rate describing the transition between any two states k and k’ is given by 

W(k,k’ )  = S(k,k’)Lf(k)( l  -f(k’)) -f(” -f(k))l  (7) 
the two terms in the square brackets corresponding to loss and gain terms as in the 
scattering integral of the Boltzmann equation. In fact, the Monte Carlo technique is 
completely equivalent to solving the Boltzmann equation [3]. In the first term of the 
right hand side of equation (7) k is the initial state with probability f(k) of being 
occupied, and k’ is the final state with probability (1 -f(k’)) of being empty, and 
vice versa for the second term. In the case where the Pauli exclusion principle can 
be neglected, f (k ’ )Cf(k))  N 0 since there is no restriction on the occupancy of the 
final state. In order to select the final states, f(k’) Cf(k)) should be considered in (7) 
but, since it is not known a priori and we know only its evolution time during the 
simulation, we make recourse to an algorithm [5] in which the selection is achieved by 
means of a self-scattering mechanism with the probability 1 - f (k’) or (1 - f (k) ) .  We 
report a very brief description of the algorithm: a grid in k-space is performed and eacll 
cell c contains at maximum N ,  = 2(N/8n.n3)AQ electrons, where AQ 1 lo-’’ is 
the volume of the cell c. When an electron is submitted to a scattering event, the cell c 
relative to the final state is found, then a distribution function f, for the cell c is defined 
and normalised to N,. A rejection technique is used on comparing the normalised f, 
with a random number 0 < r < 1; i f f ,  < r the electronic transition is allowed and 
the new final state is accepted, if r < f, the scattering mechanism is rejected and the 
electronic wavevector is unchanged. As verified in our previous paper [4] and reported 
also in the results of this paper, f ( k ’ , t )  remains similar to the Fermi function at the 
temperature of interest; for this reason it is possible to apply the rejection technique 
directly in the energy space using the Fermi-Dirac distribution modified flight after 
flight from the dynamic of the simulation, without introducing any grid in the k-space 
and reducing in this way the computer time needed for the simulation. 

By using the golden rule [8] S(k,k’)  can be calculated in the form 

s ( k , k ’ )  = g 2 6 ( f k  - f k ’  T t to ) (n( t to)  f i) (8) 

where n ( b )  is the Bose function, ck and ek, are initial and final electron energies, the 
k sign refers to absorption/emission, and the coupling constant is given by [9] 
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in which V is the deformation potential, qD the Debye wavevector, N the total number 
of ions of mass M ,  and v, the velocity of sound. From (8), the differential cross section 
for the scattering processes can be evaluated [lo]. In our Monte Carlo simulation the 
scattering processes can be considered isotropic if the momentum transfer cross section 
(weighted with the factor ( 1  - cos 0)) is used [ l l ] .  In order to evaluate the duration 
of the electron flight we use a Rees technique [12], as usual, in which the collision 
frequencies rather than the cross sections are needed. 

For our simulations we use a model with a constant frequency w of an acoustic 
branch of the order of the Debye frequency, neglecting the wavevector dependence, as 
frequently done in the self-energy expression for the electron-phonon interaction [13].  
The use of a constant coupling g2 and a q-independent frequency w permits us to 
neglect the cos 8 term which averages to zero. Such an approximation within the Monte 
Carlo technique is justified as we shall discuss in a next paragraph. This model may be 
improved without difficulty to account for an o(q) ,  but the results obtained from the 
simpler model turn out to be accurate enough. Some preliminary results considering 
such a dependence through the inclusion of a limited number of wavevectors (of the 
order of three or four) show a stabilisation of the results. In this approximation the 
collision frequencies needed in the Rees technique turns out to be 

where A = 2.71 x 10'3V2m'3/2q,/pv, in which the density p of the crystal is in g ~ m - ~ ,  
the sound velocity U, in lo5 cm s-l, the Debye wavevector qD in lo8 and the 
deformation potential V in eV. To obtain equation (lo), the density of states is assumed 
varying with the energy as ek1I2 for a 3D case. A generalisation of this formula to a 
generic dimensionality is easily found. Some detailed calculations are in progress for 
a 2D case motivated by the anisotropy of the resistivity in some materials of actual 
interest such as ceramic superconductors and will be reported elsewhere. The values of 
the parameters used in our collision frequencies are reported in table 1. 

Table 1. Values of the paranieters used in the expression of the coupling constant as in 
equation (11). 

1 1 

In the literature [8] the expressions for the collision frequencies for electron-phonon 
coupling in metals are reported neglecting the zero-point term contained in equation 
(10). The zero-point term is considered in our model because at low temperature its 
effect is strong thus increasing the emission process as we can see in figure 2 where 
we have reported the collision frequencies used by us at T = 30 K and leading to 
considerable energy loss around the Fermi level. In table 2 we report the values 
characterising the different simulated systems with the resistivity values found at room 
temperature. 

3. The results 

The results obtained by means of our Monte Carlo simulation for the values of the 
transport parameters are affected by not too large fluctuations as in previous work [3] 
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Table 2. Parameters characterising the physical systems studied by computer simulation 
and obtained values of resistivity at room temperature. 

E F  (ev) OD (eV) m ' / w  P (arm) Physical system 

1 0.1 1 4.8 x Simple metal 
0.1 0.01 1 1.31 x Metal with few carriers 
0.1 0.04 5 9.8 x lo-" YBaCuO [12] 

t 110-" s I 

0.1 1 

E ( e V 1  

Figure 2. Electron one-phonon collision frequen- 
cies for emission (curve A) and absorption (curve 
B) used in our Monte Carlo simulation. It 
should be noted that the emission frequency has 
a threshold at ha. Parameters are E F  = 1 eV, 
hw = 0.1 eV and T = 300 K. 

I 
1 2 3 4 5 

t ( lo- ' ]  5 ) 

Figure 3. Temporal behaviour of (x2 + y 2 )  obtained 
by the simulation with the initial energy distribution 
g(.s,O) = g(e,m) (curve A, upper temporal scale and 
left length scale) and g(e, 0) # g ( q  CO) (curve B, lower 
temporal scale and right length scale). In the second 
case g(e,O) is a flat distribution centred around the 
Fermi level ( E  = 1 eV, hw = 0.1 eV and T = 300 K). 

and considered as acceptable in work of this kind. They show that we are simulating 
a metal by comparing the results with the theory of metals [l l]  in analytic form. 

3.1. Stationarity 

The times of stationarisation of the simulated system are studied using two different 
initial energy distributions of electrons: g(e, 0) = g(e, CO) and g(q 0) # g(e, 00). In 
particular, for the second case, we use a flat distribution centred around the Fermi 
level. In figure 3 we report the temporal behaviour of the quantity (x2 + y 2 ) ,  which 
is of main interest for us, for the two cases. Although it is difficult to make clear the 
results because the stationarisation times are very different (almost by two order of 
magnitude) nevertheless it can be seen that by using g(e, 0) = g(e, CO) the steady state 
is reached after s which corresponds to 'v 100 scattering events for each electron, 
while in the case in which g(e, 0) # g(e, CO), approximately 4 x s are needed in 
order to reach a stationary behaviour, greatly increasing the computer time needed. It 
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should be noted that after reaching stationarity, for both cases the results are equal as 
can be verified by the slopes of the two curves. 

3.2.  Ohmicity 

Owing to the difficulties quoted before in obtaining reliable values of the drift velocity, 
we can only test the ohmicity of the system by the transversal diffusion coefficient 
which remains unchanged on varying the electrical field. The results obtained in this 
way for four values of the electrical field are reported in table 3 where one can see that 
as expected the behaviour of the system is ohmic within a percentage error of three. 

3.3. Energy distribution functions 

In figure 4 we give two energy distribution functions obtained on simulating a system 
for which the Fermi level is 1 eV and the Debye temperature is 0.1 eV at temperatures 
T = 77 K (curve A) and T = 300 K (curve B). As previously stated and expected, 
the distributions are similar in form to the Fermi-Dirac distribution but distorted by 
the electron-phonon coupling, the distortion being more prononced around the Fermi 
level where the transport processes occur. The broken curve describes the ideal case. 

A 

0.5 1.0 
E i e V 1  

Figure 4. Energy distribution function as ob- 
tained in present work. Parameters are E F  = 1 eV, 
Ro = 0.1 eV and T = 77 K (curve A) and 
T = 300 K (curve B). The broken line refers 
to the ideal case at T = 77 K. 

3.4. Resistivity versus temperature 

The main results of our Monte Carlo simulations concerning the behaviour of the 
resistivity versus temperature are comparable with the theory of metals, developed by a 
transport Boltzmann equation [ll]. In a system in which eF = 0.1 eV and 8, N 116 K, 
as one example, we have considered two regions of high temperatures T % 8, and low 
temperatures T < 8, where the theory provides two kinds of behaviour: 

T 
p = a T  for T $ O D  

8, 
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and 
p =  bT5 for T <8, 

where a = 9.9 x and b = 2.97 x lo-’’ with the values of the parameters used 
in this paper. The strong temperature dependence of the metallic resistivity described 
by equation (12) is a characteristic quantum effect in a 3D system, obtained by the 
cut-off of the Bose function at o / k T  > 1 on the collision frequencies and weighted 
by the (1 - cos8) factor. Our results are reported in figure 5 and 6 for high and 
low temperatures respectively, and they are in very good agreement with the theory 
comparing the values obtained for the parameters a = 1.7 x lo-’* and b = 3.2 x 
by the Monte Carlo simulation with the values of equation (11)  and (12) obtained by 
the Boltzmann approach. 

1I I 

300 600 500 600 

T ( K )  

Figure 5. Resistivity versus temperature at T B OD. The system parameters are: EF = 0.1 eV, 
OD = 116 K. The angular coefficient of the straight line is a = 1.7 x lo-’*. 

Ln(T5 in K 5 )  

0 10 15 20 

Figure 6. The logarithmic behaviour versus In TS for T < OD with the same parameters as 
in figure 4. The angular coefficient of the straight line is b = 3.2 x 

One should note that, in the Boltzmann approach, where the emission and ab- 
sorption processes are not distinguished, the T 5  law arises from the q-dependence of 
g2 (a q) ,  o (cc q)  and 1 - cos 8 a q2 as well as the q2-dependence of scattering space 
in 3D [8, lo]. In a rigorous approach [ l l ,  141, in which phonon emission and absorption 
processes are treated separately, the inclusion of the zero-point term is consistent with 
the T 5  law. This is the same conclusion as we find by our Monte Carlo simulations. 

From table 2 we can also note that the orders of magnitude of the resistivity 
obtained by Monte Carlo simulation are in agreement with the experimental ones in 
the different physical systems examined. 
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Figure 7. Many-body (including the Fermi functions) total 
collision frequencies for electron-phonon scattering from the 
first-order perturbation theory (curve A) and from renormalised 
electron self-energy (curve B). Parameters are EF = 0.1 eV and 
hw = 0.01 eV at T = 15 K. 

0.09 0.1 
10'0 

E (eV)  

3.5. Mean energy 

Another parameter which can be obtained by means of the simulation is the electron 
mean energy. Some values obtained in the simulation indicate that they are lower than 
the known free values T = ifF especially at low temperatures indicating a dominant 
emission mechanism as in figure 2. These are given in table 3. 

Table 3. Values of transversal diffusion coefficients obtained by Monte Carlo simulation 
at different electrical fields. The parameters of the system are E F  = 0.1 eV, OD = 116 K 
and T = 50 K. In the last column we report the percentage error with respect to the mean 
value of 1.31 x lo-' cm2 s-'. 

E (V cm-') DT (cm2 s-') A 

0.1 1.29 x lo-' 2.08 
0.5 1.28 x lo-' 2.85 
1 1.35 x lo-' -2.46 
1.5 1.35 x lo-' -2.46 

4. Conclusions 

The results presented in this paper suggest that the Monte Carlo technique may be 
suitable for the study of transport properties of metals, with acceptable statistical 
fluctuations at the low fields that can be applied to systems in the ohmic regime. They 
suggest that it may become particularly useful to investigate more realistic situations 
not accessible by the simple theory of metals once the collisions frequencies are known. 

In this respect, one of the possible developments we envisage is the study of 
renormalisation effects on the transport mechanisms to account for a coupling of 
electrons with the lattice vibrations strong enough to be outside the possibility of the 
perturbative description. The renormalisation influences the scattering frequencies, as 
one can see in figure 7, producing at low temperature a stronger depression around 
the Fermi level and this fact can be introduced within the Monte Carlo procedure 
relatively easily. Preliminary results under investigation show that the stronger coupling 
corresponds to higher resistivity at high temperature, but also to an enhancement of 
the quantum effects with an increase to the power five in (12). 
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Another field of investigation which appears promising is the inclusion of various 
scattering phonon processes, as may arise for example from optical and polar branches 
or diverse acoustic subbranches of the lattice with more than one ion per unit cell. 
Such a procedure is already successful in different systems in which the stoichiometric 
composition is relevant [3,15] and appears possible also for metals. Finally one may 
envisage the use of the Monte Carlo technique for the study of conductivity fluctuations 
close to the superconducting transition, at which the resistivity becomes very small. 
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